Pages

Increasing the Base Clock

Open the BIOS. You will be making the majority of your changes in your computer's BIOS, which is the configuration menu that can be accessed before your operating system is loaded. You can access most BIOS by holding the Del key while the computer is booting up. Other possible setup keys include F10F2, and F12.

  • Every BIOS is different, so menu labels and locations may vary from system to system. Don't be afraid to dig through the menu system to find what you need.
  • Open the "Frequency/Voltage Control". This menu may be labeled differently, such as "Overclocking". This is the menu that you will be spending most of your time in, as it will allow you to adjust the CPU speed as well as the voltage it receives.
  • Reduce the memory bus speed. In order to help prevent the memory from causing errors, you'll want to lower the memory bus before continuing. This may be referred to as the "Memory Multiplier", "DDR Memory Frequency" or "Memory Ratio". Lower it to the lowest possible setting.
  • If you cannot find the memory frequency options, try pressing Ctrl+Alt+F1 on the BIOS main menu.
  • Increase your base clock by 10%. The base clock, also referred to as front side bus or bus speed, is the base speed of your processor. It is typically a lower speed that is multiplied to reach the total core speed. Most processors can handle a quick 10% jump at the start of the process. For example, if the base clock is 100 MHz, and the multiplier is 16, the clock speed is 1.6 GHz. Bumping it up 10% would change the base clock to 110 MHz, and the clock speed to 1.76 GHz.
  • Run a stress test. Once you've performed your initial 10% raise, restart your computer and boot into your operating system. Start up your LinX and run it through a few cycles. If there are no problems, you're ready to move on. If your system is unstable, you may not be able to get much performance out of the overclock, and you should reset your settings to default.
  • Increase base clock until the system becomes unstable. Instead of increasing 10% each time, you'll want to reduce your increments to about 5-10 MHz per pass. This will allow you to find a sweet spot much easier. Run a benchmark every time you make an adjustment until you reach an unstable state. The instability is most likely caused by the processor not receiving enough power from the power supply.

No comments:

Post a Comment